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0 Introduction to risk and climate risk
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What's risk?

The term “risk” is used differently in everyday life and in literature, depending on the
context:

@ In colloquial language: occurrence of “unfavourable” events with adverse
(economic) consequences.

@ Concise Oxford English Dictionary: “hazard, a chance of bad consequences, loss
or exposure to mischance”.

@ The standard “ISO 31000 - Risk Management” describes risk as the “effect of
uncertainty on objectives”.

@ Keywords: decisions, uncertainty, events, consequences.
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Climate risk

@ The Earth’s climate is changing: average temperatures rise, acute phenomena
such as heat waves and floods grow in frequency and severity, and chronic
phenomena, such as drought and rising sea levels, intensify.

@ First fundamental question: which actions should be tackled in order to mitigate
climate change?

@ Second fundamental question: how can climate change impact socioeconomic
and financial systems across the world in the next decades?

@ Climate change risk assessment involves formal analysis of the consequences,
likelihoods and responses to the impacts of climate change and the options for
addressing them.

@ In this lecture we will focus more on the impact of climate risk in financial systems.
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e Climate risk in finance
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Climate risk in finance

Financial institutions face today face a two-sided climate risk: a physical impact risk
and a policy risk .

@ Many possible catastrophic events are linked to climate change: fires (California
2018, Australia 2020), hurricanes, floods, and probably also pandemics like
Covid-19. These events may cause dramatic losses in different ways.

@ Across the world, we see a tightening of climate policies and regulations to shift
the economy away from fossil fuels. The restructuring is accelerated by the Paris
Agreement, which sets clear aspirations to limit global warming to 1.5 or 2 degrees
Celsius, and will affect all sectors and future investment patterns for global
financial capital.

Both physical and policy risks can result in real financial impacts to companies and
assets.
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Effects of a natural disaster on the financial system

@ Natural disasters may destroy the physical capital, forcing the companies directly
affected to allocate financial resources to reconstruction. Such a diversion of
resources has the effect of increasing debt, thus reducing the resources available
for consumption and investment.

@ Environmental shocks may increase the number of non-performing loans in the
portfolio of banks that are particularly exposed to households or businesses in the
areas most at risk. This could induce banks to restrict the supply of credit, which
would potentially affect the effectiveness of the credit channel of monetary policy.

@ If the damaged infrastructures are not insured, the effects of natural events take
away more resources from the people involved and may lead to a more significant
reduction in the value of the collateral pledged for credit.

@ Inturn, a reduction in the value of collateral, associated with an increase in the
financial vulnerability of the companies hit by the shock, could increase both the
possibility of default and the amount of the loss that the bank must bear in case of
a borrower’s default.
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Effects on insurance

@ If the companies affected by natural disasters are insured, this can have a big
repercussion on the institutions whose business is taking on these kinds of risks,
i.e. insurance companies.

@ A deterioration in the financial position of insurance companies could in turn affect
financial stability if they stop providing certain services or the value of their
securities abruptly decreases, thus negatively affecting the situation of other
financial institutions that hold them in their portfolio.

@ When insurance have to bear huge losses due to catastrophic events,
re-insurance companies might also be distressed.
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Effects of a natural disaster on the financial system
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@ A second risk comes from the commitments made by the international community
in order to decrease the atmospheric concentration of greenhouse gases at a level
that allows the increase in temperature to be kept below 2°C compared with
pre-industrial levels.

@ A sudden drop in the value of reserves and related infrastructures could start a
race to sell the securities of energy companies, with consequences that could
permanently affect the path to global economic growth.

@ Moreover, the transition could be inflationary, because climate policies may
require the use of alternative energy sources that are currently more expensive, or
the introduction of carbon pricing systems that affect prices and economic
activities (e.g. the imposition of a carbon tax)
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e A first approach to risk measurement
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So: we have to measure a given risk..

@ Kloman 1990: “risk management is a discipline for living with the possibility that
future events may cause adverse effects”

@ Quantitative approaches to risk assessment often identify risk with the fluctuation
of a value variable.

@ Two kinds or approaches:

@ One-sided approaches: only consideration of “unfavourable” deviations
@ Two-sided approaches: consideration of both “favourable” and ‘unfavourable” deviations

@ Examples of risk measurement related to climate risk in finance:

@ an insurance company might want to assess the risk of big losses in most exposed
areas (i.e., Florida with hurricanes);
@ a bank might want to quantify its exposure to transition risk.
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A first approach to risk measurement in Financial mathematics

Let (Q, F, P) be a probability space.
X = {X random variable on (2, F, P), with some integrability condition w.r.t. P}

X stands for the value of a financial position at the end of a given period (for
example, liquidation time of positions).

A risk measure p is a functional
p: X =R,

assigning a risk p(X) to the financial position represented by X.

In financial applications, a rational decision maker tries to find a position X € X,
with possibly some constraints, that minimizes p(X).
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@ Risk measures are defined either in relation to the financial position X or to the
loss L = —X.

@ This difference must be taken into account in practical work and when applying
results from the literature.

@ In this lecture, the risk for us will be usually given in terms of financial positions.
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Some examples of risk measures

In the examples below, E[-] denotes expectation with respect to P, i.e. E[X] = [, XdP.

@ Variance:
Var(X) =E [(X — E[X])*].

@ Normalized standard deviation:
5(x) = YVarX)
E[X]

Intuition: random variables with a large expected value often have a large variance
or standard deviation

@ Semivariance: )
Vary(X)=E [((E[X] - X)) ] .

Note: only shortfalls X < E[X] are taken into account.
@ Value at Risk at level « € (0, 1) of a financial position X:

VaRa(X) :=inf{m e R: P(X +m < 0) < a}.

Interpretation: smallest amount of money (“risk capital”) that must be added to X
so that the probability of bankruptcy is < a.
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0 Climate risk measurement under model uncertainty: motivation
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But: are these risk measures appropriate for climate risk?

@ Problem: the climate change case illustrates particularly well a situation in which
the probabilistic model, i.e., the probability measure P, is neither explicitly given
nor can it be adequately approximated or inferred with the available data and
current scientific methods: deep model uncertainty.

@ These uncertainties arise from both the extreme complexity of the climatic system
and our inability to perfectly capture the way our socioeconomic system would
respond and adapt to climate change.

@ This is particularly the case when we consider situations with potential
catastrophic consequences, such as the collapse of the Atlantic thermohaline
circulation, the melting of the Antarctic ice sheet or the loss of the Amazon
rainforest. Such catastrophic events (also called tipping points) have not been
encountered in recent history, and therefore their likelihood of occurrence is
extremely difficult to assess.
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How to deal with this issue?

@ In view of this disagreement among experts or models, how should a rational
policy decision maker proceed?

@ If one follows the traditional Bayesian/subjective risk minimazation approach, one
will simply aggregate the models by averaging them into a single representative
model.

@ The problem with this approach is that the decision maker considers the resulting
aggregated model in exactly the same way as one would consider an equivalent
objective model representing a specific risk, and model uncertainty has therefore
no impact on the decision-making process.

@ Elisberg (1961) showed through different experiments that the choices of
individuals cannot be rationalized under the traditional Bayesian expected utility
paradigm, and that individuals usually manifest aversion toward situations in which
probabilities are not perfectly known.
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@ Introduction to model uncertainty
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Let’s start with an example: Ellsberg paradox

Urn with 90 balls: 30 red, 60 black OR white.
People have been required to answer the following questions:
@ do you prefer to receive 100$ when you:

@ drawaredball
Q draw a white ball

@ do you prefer to receive 100$ when you:

@ draw a red or black ball
© draw a white or black ball

Try to guess the most common answers..
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Let’s start with an example: Ellsberg paradox

Urn with 90 balls: 30 red, 60 black OR white.
People have been required to answer the following questions:

@ do you prefer to receive 100$ when you:
@ draw ared ball
Q@ draw a white ball

@ do you prefer to receive 100$ when you:

@ draw a red or black ball
© draw a white or black ball

Try to guess the most common answers..
@ (a) to point 1, (b) to point 2.

@ But why? Relying on utility theory, if you prefer red to white you also prefer [red or
black] to [white or black]!

@ Possible reason: people are averse to model uncertainty.
@ Let’s go more into details..
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Risk vs uncertainty (Knight, 1921)

@ There’s a difference between two types of “imperfect knowledge”:
@ risk (or measurable uncertainty) — situations in which the distribution of the target
random variables is known;
@ (Knightian, model, or not measurable) uncertainty — the distribution of the target
random variables is not known. This is the case for many issues related to climate risk.
@ Think about the previous example: if you win when you draw a red ball, your
gamble is based on a distribution you know: P(win) = £. This is not the case if
you win when the white ball is drawn. Same thing for the second choice.

@ The example shows that people do no treat these kinds of uncertainty in the same
way: ambiguity aversion.
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Model uncertainty and Financial mathematics

@ Standard procedure: modelling under the usual concept of “Risk”:
o Tacit assumption: a fixed probability measure P, and thus the distribution of the
underlying random variables/sources of risk, is known.
o Example in financial mathematics: we specify the dynamics of some stochastic

processes with respect to a fixed probability P and we price derivatives based on those
dynamics.

@ The assumption above is not realistic for climate risk (as well as in other fields of
finance).

@ Approach under model uncertainty: probabilities are unknown for financial market
events — Increased awareness of the problems that can result from excessive
reliance on a specific probabilistic model is needed.
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Approach under model uncertainty

@ Instead of a reference measure P, consider a family P of possible probability
measures. Each element of P reflects a possible different model, which gives rise
to a different probability distribution.

@ Extension, and robustification, of the classical portfolio theory.
@ Example: utility maximization under model uncertainty
@ S stochastic process with log-normal returns Ry, i.e.,
Sp = SpeftitRat+Rr
o Introduce a family of probability measures to express uncertainty about returns:
P .= {P*|u € [a,b] and Ry, Ra, ..., Ry i.id. , Ry ~ N(u,0?) under P*}.

e The maximization of the expected utility of a financial position X involving S and a
risk-free asset can be achieved by

maximize inij’S[u(X)], Xex,
peh

u(-) utility function, X family of financial positions: maxmin approach.
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Model uncertainty and risk management

@ There are different possible ways to deal with model uncertainty in risk
management (and so in particular with climate risk).

@ Akey idea is that risk measures should be robust with respect to model
uncertainty.

@ There is not a unique notion of robustness for a risk measure. In this lecture we
will see two of them:

@ robust representation: a risk measure has a robust representation if it can be
characterized without referring to a given a priori measure.

@ robustness in the sense of Embrechts, Schied and Wang (2019): a risk measure p is
robust if the minimization of p(X') does not strongly depend on small changes in the
distribution of X.

@ We first focus on the first notion above. We start from a characterization of risk
measures with some desired properties.

@ The next section is based on the paper Robust Preferences and Convex Measures
of Risk, Follmer and Schied, 2002.
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e Robust representation of convex risk measures
@ Axiomatic theory of risk measures
@ Examples of risk measures with a robust representation
@ Existence of a robust representation for convex risk measures
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e Robust representation of convex risk measures
@ Axiomatic theory of risk measures
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@ At the turn of the millennium, the weaknesses of Value at Risk led to the
development of an axiomatic theory of risk measures:
@ P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk, Mathematical
Finance 9, 1999;
o H. Follmer, A. Schied, Convex measures of risk and trading constraints. Finance &
Stochastics 4, 2000.

@ Core ideas:

@ The risk of a position X has to be quantified as the minimum capital which must be
added to X so that the position becomes acceptable (e.g. from the point of view of a
supervisory authority)

@ Diversification must be incentivated: subadditivity/convexity
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The setting

@ Take a measurable space (2, F), standing for possible scenarios. Note: no
probability measure is specified!

@ A financial position is modelled by a random variable X : @ — R: X (w) is the
discounted value of the position at the end of a given period (liquidation time, as
before) in the scenario w.

@ The space X of all possible positions is a linear subspace of measurable functions
on (£, F), which contains the constants.
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Monetary risk measures

A functional p : X — R is called monetary risk measure if it satisfies the following
properties:

@ no position is “infinitely good”: p(X) > —oo for all X € X;

@ for every constant m € R it holds p(m) < +oo;

@ monotonicity: if X <Y (i.e., X(w) <Y (w) for all w € Q), it holds p(X) > p(YV);

@ cash invariance: for every m € R it holds p(X + m) = p(X) — m: if a capital m is
added to a position X, the risk of new position X + m is reduced by amount m.
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Acceptance sets

A set A C X is said to be an acceptance set if:
@ AN {constant functions} # (: Im € R such that having m is acceptable;

@ For all X € X there exists m € R such that X + m # A: no position is “infinitely
good”;
© Aismonotoneinthesensethat X ¢ A, Y ¢ XYandY > X implies Y € A.
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From acceptance sets to monetary risk measures and viceversa

Let A C X be an acceptance set. Thus the functional p4 : X — R defined by
pa(X) :=inf{meR: X +m e A}
is @ monetary risk measure.

Let a functional p : X — R be a monetary risk measure. Thus the set A, defined by

A, ={X e X:p(X) <0}

is an acceptance set.
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Convex risk measures

Remember: diversification should not increase risk!

A monetary risk measure p is called a convex risk measure if for every A € [0, 1],
X,Y € X it holds

POX + (1= NY) < Ap(X) + (1= Np(Y).

v

A monetary risk measure is convex if and only if for every A € [0, 1], X,Y € X it holds

pPAX + (1 = N)Y) < max(p(X), p(Y)).

v
Proposition
A monetary risk measure p is convex if and only if A, is a convex set.
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Coherent risk measures and subadditivity

Definition

A convex risk measure p is called coherent risk measure if it is positive homogenous,
i.e., if forevery A > 0, X € X it holds

pP(AX) = Ap(X).

Proposition
A coherent risk measure is subadditive, i.e., for every X, Y € X it holds

pP(X +Y) < p(X) + p(Y).

Proposition
A monetary risk measure p is coherent if and only if A, is a convex cone.
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What about model uncertainty?

@ Note that for now we have not fixed any probability measure, so no model for our
risky financial position X.

@ On the other hand, no notions of robustness with respect to model uncertainty
have been specified.

@ This is what we want to do now.
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Definition
A risk measure p admits a robust representation if for every X € X’ it holds

p(X) = sup {E°[-X] - a(Q)},

QeEM
where

M = {probability measures Q on (€2, F) such that E“[X] is finite for every X € X'}.

The functional o : M — Rt U {+o0} is called penalty function.

Interpretation

@ The elements of M can be interpreted as possible probabilistic models, which are
taken more or less “seriously” according to the size of the penalty a(Q).

@ The value p(X) is computed as the worst case expectation taken over all models
Q@ € M and penalized by a(Q).
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Robust representation for coherent measures
Proposition
A risk measure p satisfying the representation above is convex.

Proof
Let A € (0, 1), and suppose that p has the representation

with @ : M — RT U {+00}. Then for every X,Y € X and X € (0, 1) it holds

p(AX + (1= \Y) = sup {IEQ[—AX — (1= AY] - a(Q)}

QeEM
zgga{Mfﬁfﬂ+%1—AWQFYP—MKQ%—O—AﬁWQﬁ
= sup {3 (B[-X] - (@) + (1= (E%-Y] - a(@) }

<2 sup {E°-X]- 2@} + (1= sup {E%-Y]- (@}

= Ap(X) + (1= Np(Y).
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Proposition

@ A risk measure p which admits a robust representation is coherent if and only if
the penalty function « only takes the values 0 and oo, i.e.

p(X) = sup E?[-X]
QeQ

where Q = {Q € M : o(Q) = 0}.
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e Robust representation of convex risk measures

@ Examples of risk measures with a robust representation
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In the following examples a probability measure P is fixed in (2, ) and the linear
space X = L*°(Q2, F, P) is considered. All risk measures are initially defined on X, but
have canonical extensions to larger spaces.

The expectation will be always taken with respect to P unless differently specified, i.e.

E[X] = /Q XdP.

Note that since we consider bounded random variables, the set M introduced above is
the space of probability measures in (€2, F).
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Value at Risk: no convex, no robust representation!

@ The Value at Risk at level X is a monetary risk measure with acceptance set

Ay ={X € X :P(X <0) <A}

@ In terms of capital requirement:

VaRy(X)=inf{m eR: X +m € A\}
=inf{m e R: P(X +m < 0) <A}

@ Note: Value at Risk is a positive homogenous monetary measure, but no convex!

@ |t follows that not only Value at Risk does not reward diversification, but from the
proposition we have seen it also fails to have a robust representation.
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Average Value at Risk/Expected Shortfall

Definition
The Average Value at Risk at level A\ € (0, 1] for a position X is

1 A
AVaR\(X) = 5 / VaRs(X)dp.
0

@ As opposed to Value at Risk, it takes into account extreme losses.
@ Since A — VaR, is non-decreasing, it holds

AVaRx(X) > VaRx(X) :

Average Value at Risk is more conservative with respect to Value at Risk.
@ ltis a coherent risk measure with robust representation

AVaRy\(X)= sup E®[-X]
QEQN(P)

with

O\ (P) = {QeM,Q<<P;%g

}
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Utility-based shortfall risk

Let £: R — R be a convex and increasing function, and take ro > inf,cr{¢(z)}. The
utility-based shortfall risk p for a position X € X is defined as

p=inf{m: X +m € A}

where
A:={X e X :E[l(-X)] <o}

The acceptance set A can be written in the form
A:={X € X :E[u(X)] >0}

for the utility function u(z) := ro — ¢(—z). From this the name “utility-based shortfall
risk”.
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More on the utility-based shortfall risk

@ The acceptance set A is convex, so p is a convex risk measure.

@ If X has a continuous distribution and if £ is continuous, m = p(X) is the unique

solution to the equation
E[¢(—X —m)] = ro.

This can be solved by numerical methods.
@ p admits a robust representation

p(X)= sup {E?[-X]-a(Q)}
QeM (P)

where M (P) ={Q € M,Q < P} and

a(Q) = ;I;foi (m +E {e* (A%)D :

where £ (z) := sup, g {2z — £(x)} is the Fenchel-Legendre transform.

Andrea Mazzon Climate risk and model uncertainty 44/65



Entropic risk measure

For a fixed probability measure P and a parameter v > 0, the entropy penalty function
is defined as a(Q) := 3 H(Q|P), where

E°m¥] ifQ<P
+o00 otherwise

H(Q|P) :={

Interpretation: the more a measure @ “diverges” from P, the more it get penalized.

For a fixed probability measure P and a parameter + > 0, the entropic risk measure for
a position X is defined by the robust representation with respect to the entropy

penalization function defined above:

(X) := sup {E?[-X] — a(Q)}-
QeM

€y
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More on the entropic risk measure

@ It can be seen that
H(Q|P) = sup  {E®[-X] —InE[e ]}
XEL>®(Q,F,P)
@ |t follows the explicit representation

ey(X) = ! InE[e™"].

~

@ Define the loss function ¢(z) = ¢”* and the utility function u(z) =1 — e 7",
Thus it holds

A={X € Xley(X) <0} ={X e XYIE[{(-X)] <1} ={X € X|E[u(X)] > 0}.

@ Then, the entropic risk measure is a special case of the utility-based shortfall risk
measure
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e Robust representation of convex risk measures

@ Existence of a robust representation for convex risk measures

Andrea Mazzon Climate risk and model uncertainty 47/65



The setting

@ We have seen some examples of risk measures with a robust representation in
the specific setting where a probability measure is fixed.

@ We now want to give some more general results.

@ From now on we assume that X’ is the linear space of all bounded measurable
functions on a measurable space (2, F).

@ As before, denote by M the set of all probability measures on (2, F).

@ Moreover, we introduce the larger set M of all finitely additive and non-negative
set functions @ on F which are normalized to Q[?] = 1. Note that these are not

necessarily probability measures, since probability measures must satisfy
countable additivity.
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Representation with respect to Mg

Theorem
Any convex risk measure p on X admits the representation

p(X) = max (E%[-X] - amn(Q)), X €2,

where the penalty functional amin is given by

omin(Q) 1= sup E°[-X], Q€ Mp,
)

with
A, ={X e X:p(X)<0}.

Moreover, amin is the minimal penalty function which represents p, i.e., any penalty
function « for which

p(X) = max (E-X]- @), Xex,

satisfies a(Q) > amin(Q) for all Q@ € Mp.

Andrea Mazzon Climate risk and model uncertainty 49/65



Representation with respect to M for coherent risk measures

Corollary

The minimal penalty function amin Of a coherent risk measure p takes only the values 0
and +oo. In particular,

X) = E°-X], XeX
p(X) Qlax [—X], € X,

for the set
Qmax = {Q S MF : Omin = O}

Andrea Mazzon Climate risk and model uncertainty 50/65



Representation with respect to M

@ We have nice results about the (robust) representation of a convex risk measure
with respect to M, and basically no more assumptions are needed.
@ However, we are interested in the case where p admits a representation in terms

of (countably additive) probability measures, i.e., it can be represented by a
penalty function o which is infinite outside the set M:

p(X) = sup (E°[-X] - a(@)

In this case, one can no longer expect that the supremum above is attained, see
the example in the next slide.
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Remember that M denotes the set of all probability measures in (2, F). So it contains
all Dirac measures 4., for w € Q, given by

1 ifw =w
60./ "= .
) {0 if o # w.
It holds E* [X] = [, X (w')déu(w') = X (w).
Thus we have

pmax(X) := sup E¢[—X] = sup(—X(w)) = — inf X(w) forall X € X.
QeMm wen we

Thus, if X does not attain its infimum, there exists no probability measure @ such that
E?[~X] = pmax(X).
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A sufficient condition for having a robust representation with the

maximum

Proposition
Let p be a convex risk measure which is continuous from below in the sense that

p(Xn) \( p(X) whenever X, "X,

and suppose that « is any penalty function on M ¢ representing p, i.e., such that
p(X) = max (EQ[—X] —a(Q)), X e X.

Then « is concentrated on probability measures in the usual sense, i.e.,

a(Q) < co = @ is a probability measure.
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A sufficient condition for having a robust representation with the
maximum

Remark

The proposition above implies that if p is a convex risk measure which is also
continuous from below, it can be represented as the maximum

p(X) = max (E°[-X] - amin(Q))

However, the example we have seen shows that not all the convex risk measures with
a robust representation

p(X) = sup (JEQ[—X} - amm(Q)) :

are represented by the maximum. So this condition is not necessary for having a
robust representation.
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Setting for a weaker sufficient condition for a robust representation

@ We assume now that Q2 is a Polish space, i.e., a separable topological space
admitting a complete metric.

@ We also suppose F to be the Borel o-algebra.

@ As before, X is the linear space of all bounded measurable functions on (£2, F),
and we denote by C;(2) the subspace of bounded continuous functions on 2.

Definition

A convex risk measure p on X is called tight if there exists an increasing sequence
Ky C K2 C --- of compact subsets of Q2 such that

pP(ALik,3) N\ p(A) forallX>1.
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A weaker condition for a robust representation

Theorem

Let p be a convex risk measure on X. Then the following conditions are equivalent:

@ pistight

@ pis continuous from below in C, (), i.e., if (X,)nen is @ sequence in C, () such
that X,, /' X € Cy(Q2), then p(X,) \ p(X).

If one of the two conditions above is satisfied, p has the robust representation

p(X) = sup (E®[-X] - a(Q))

QeM
for a given penalty functional «.
If p is coherent and one of the two conditions above is satisfied, p has the robust
representation
p(X) = sup E?[-X],
QeQ

for a given subset © C M.
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o Robustness in the Optimization of Risk Measures
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@ The following presentation is based on the paper Robustness in the Optimization
of Risk Measures, Embrechts, Schied and Wang, 2019.

@ The main goal is to develop a methodology for determining if an optimization
problem related to a risk measure is robust with respect to model uncertainty.

@ Consider an n-dimensional random vector, which includes all random sources in
an economic model, such as potential losses, traded securities, hedging
instruments, insurance contracts, macro economic factors, or pricing densities.

@ Let X be an n-dimensional random variable representing the best-of-knowledge
model for an agent (e.g., computed by statistical inference) of the random vector
above.

@ The agent has to minimize the risk of his/her position, according to the risk
measure p taken into consideration and to the best-of-knowledge model X along
with its distribution Fx.

@ Question: if X is not the true model, and the true model is another n-dimensional
random variable Z, what’s the residual risk that the agent is not minimizing?

@ Intuitively, a risk measure p is robust if the solution to the risk minimization
problem based on X is close to the solution to the risk minimization problem
based on Z if Z is close to X (under a given pseudo-metric).
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The setting

@ Introduce an atomless probability space (2, F, P). Let L% = L2 (Q, F, P) be the
space of all P-a.s. finite, n-dimensional random variables.

@ Let G, be the set of measurable functions mapping R" to R.

@ A random variable g(X) where g € G,, represents the future value of a position of
an agent, according to the best-of-knowledge model X.

@ The agent has to choose among admissible positions g(X) for some functions g in
an admissible set G C G,, to minimize the risk of the position, i.e.,

to minimize: p(g(X)) subjectto g € G,

with p risk monetary risk measure mapping a set containing {g(X) : g € G} to
R U {+o0}.
@ Let Gx(p) be the set of optimizing functions for the model X, that is,
Gx(p) ={9 € G:p(9(X)) = p(X;G)},

with
p(X;G) = inf{p(g(X)) : g € G}.
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Model uncertainty

@ Let Z c L2 be a set of possible economic vectors including X: it is interpreted as
the set of alternative models.

@ Introduce the pseudo-metric 77 in Z defined as
m (X,Y) =np(Fx,Fy), X,Y€Z,

where 7p is the Prokhorov metric over the set of probability distribution measures
mp(p,v) =inf{e > 0: u(A) <v(A) +eand v(A) < pu(Ae) +eforall A e BR™)}
where A, = {z € R" : Jy, € Awith ||z — yz|| < €} and || - || is the Euclidean norm.

@ Call Z € Z the real economic vector. Denote gx a generic element gx € Gx(p)
and gz a generic element gz € Gz (p).

@ The real but unknown position gx (Z) may be different from the perceived optimal
position gx (X).

@ If Z and X are close to each other according to the pseudo-metric above, we
would like p(gx (Z)) to be close to p(gx (X)).

@ In other words, we want some continuity of the map Y — p(gx(Y)) atY = X.
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Robust risk measures

Definition

We call (G, Z, 7)) an uncertainty triplet.

For a given uncertainty triplet (G, Z, 7)) we say that a monetary risk measure p is

compatible if pmaps G(Z) :={g(Z) : g€ G,Z € Z} to RU {400} and is distribution
invariant, i.e., p(X) = p(Y) if Fx = Fy.

i

Let (G, 2,7, ) be an uncertainty triplet. A compatible risk measure p is robust at
X € Z relative to (G, Z, 7)) if there exists gx € Gx (p) such that the function
Y — p(gx(Y)) is 7l -continuous at Y = X.
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Other possibly analysis

@ The following quantities have different physical meanings:

o p(g9x(X)): the perceived risk value optimized for X;
o p(g9z(2)): the idealistic risk value optimized for Z if Z was known;
e p(gx(2)): the actual risk value of the model Z, with optimization made for X.

@ Correspondingly, the following quantities are given:

e solvency gap: p(gx (Z)) — plgx (X));
e optimality gap: p(gx (2)) — p(92(2));
o optimality shift: p(g9z(Z)) — p(gx(X)).

@ Since p(gz(Z)) is not available, the focus is on the first quantity.
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Two simple results

If Gx (p) = 0, pis not robust at X by definition.

Proposition

If Gx (p) contains a continuous function g : R® — R and p is 7 -continuous, then p is
robust at X relative to (G, Z, ).
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Three optimization problems for three admissible sets

@ Letn =1and X < 0 be the perceived model of a random risk factor, representing
a loss.

@ Suppose that a position on the random risk factor can be traded in the financial
market with pricing density function ~, i.e., by holding a risky position g(X) one
receives the monetary amount E[y(—g(X))].

@ The risk minimization problem is taken over the functions g € G satisfying the
budget constraint E[y(—g(X))] > o, for a given zo > 0.

@ Consider the following three classic setups of the risk minimization problem to
minimize p(g(X)) subjectto g € G C G for the following choices for G:
@ case with no more restrictions:

G = Gne = {g € G1 : Ely(—g(X))] > w0};
@ no short-selling or over-hedging constraint:
G =0ns ={g € G1: E[y(=g(X))] = zo, X < g(X) <O}
@ bounded constraint: for some m > 0,
G =Gbe = {9 € G1 : E[y(—g(X))] = w0, g(X) > —m}.
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Main results about Value at Risk and Average Value at Risk

Here we assume that:
@ X € Z, X <0 and the distribution of X has a positive density on its support.

@ The pricing density v : R — R* is continuous and strictly positive, E[y] = 1, and
E[y(—X)] < co.

Theorem

If v is also nondecreasing, the Value at Risk measure is not robust at X for any of the
three problems stated above.

Theorem

Suppose that either ~ is a constant, or ~y is a continuous function and y(—X) is
continuously distributed. Thus, the Average Value at Risk

| \

1 A
AVaRA(X) = 5 / VaRs(X)dB
0

is robust at X for any of the three problems stated above.
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